The first eigenvector of a distance matrix is nearly constant
نویسندگان
چکیده
Let x1,…,xn be points in a metric space and define the distance matrix D?Rn×n by Dij=d(xi,xj). The Perron-Frobenius Theorem implies that there is an eigenvector v?Rn with non-negative entries associated to largest eigenvalue. We prove this nearly constant sense inner product vector 1?Rn large?v,1??12??v??2??1??2 each entry satisfies vi??v??2/4n. Both inequalities are sharp.
منابع مشابه
Simple Construction of a Frame which is $epsilon$-nearly Parseval and $epsilon$-nearly Unit Norm
In this paper, we will provide a simple method for starting with a given finite frame for an $n$-dimensional Hilbert space $mathcal{H}_n$ with nonzero elements and producing a frame which is $epsilon$-nearly Parseval and $epsilon$-nearly unit norm. Also, the concept of the $epsilon$-nearly equal frame operators for two given frames is presented. Moreover, we characterize all bounded invertible ...
متن کاملOn the distance from a matrix polynomial to matrix polynomials with two prescribed eigenvalues
Consider an n × <span style="fon...
متن کاملLocalized eigenvector of the non-backtracking matrix
Emergence of localized eigenvectors can cause a failure of standard spectral method for graph partitioning. The spectral method using the non-backtracking matrix was proposed as a way to overcome this problem. The numerical experiments on several examples of real networks show that, indeed, the non-backtracking matrix does not exhibit localization of eigenvectors. We show that, however, localiz...
متن کاملdeterminant of the hankel matrix with binomial entries
abstract in this thesis at first we comput the determinant of hankel matrix with enteries a_k (x)=?_(m=0)^k??((2k+2-m)¦(k-m)) x^m ? by using a new operator, ? and by writing and solving differential equation of order two at points x=2 and x=-2 . also we show that this determinant under k-binomial transformation is invariant.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2023
ISSN: ['1872-681X', '0012-365X']
DOI: https://doi.org/10.1016/j.disc.2022.113291